martes, 27 de abril de 2010

sistema de ensendido

Sistema de encendido

Cuando se habla de sistema de encendido generalmente nos referimos al sistema necesario e independiente capaz de producir el encendido de la mezcla de combustible y aire dentro del cilindro en los motores de gasolina o LPG, conocidos también como motores de encendido por chispa, ya que en el motor Diesel la propia naturaleza de la formación de la mezcla produce su auto-encendido.
En los motores de gasolina resulta necesario producir una chispa entre dos electrodos separados en el interior del cilindro en el momento justo y con la potencia necesaria para iniciar la combustión.

Generación de la chispa

En conocido el hecho de que la electricidad puede saltar el espacio entre dos electrodos aislados si el voltaje sube lo suficiente produciéndose lo que se conoce como arco eléctrico. Este fenómeno del salto de la electricidad entre dos electrodos depende de la naturaleza y temperatura de los electrodos y de la presión reinante en la zona del arco. Así tenemos que una chispa puede saltar con mucho menos voltaje en el vacío que cuando hay presión y que a su vez, el voltaje requerido será mayor a medida que aumente la presión reinante. De esto surge la primera condición que debe cumplir el sistema de encendido:
  • Condición 1: El sistema de encendido debe elevar el voltaje del sistema eléctrico del automóvil hasta valores capaces de hacer saltar la electricidad entre dos electrodos separados colocados dentro del cilindro a la presión alta de la compresión.

Momento del encendido

Durante la carrera de admisión la mezcla que ha entrado al cilindro, bien desde el carburador, o bien mediante la inyección de gasolina en el conducto de admisión se calienta, el combustible se evapora y se mezcla íntimamente con el aire. Esta mezcla está preparada para el encendido, en ese momento una chispa producida dentro de la masa de la mezcla comienza la combustión. Esta combustión produce un notable incremento de la presión dentro del cilindro que empuja el pistón con fuerza para producir trabajo útil.
Para que el rendimiento del motor sea bueno, este incremento de presión debe comenzar a producirse en un punto muy próximo después del punto muerto superior del pistón y continuar durante una parte de la carrera de fuerza.
Cuando se produce la chispa se inicia el encendido primero alrededor de la zona de la chispa, esta luego avanza hacia el resto de la cámara como un frente de llama, hasta alcanzar toda la masa de la mezcla. Este proceso aunque rápido no es instantáneo, demora cierto tiempo, por lo que nuestro sistema debe producir la chispa un tiempo antes de que sea necesario el incremento brusco de la presión, es decir antes del punto muerto superior, a fin de dar tiempo a que la llama avance lo suficiente en la cámara de combustión, y lograr las presiones en el momento adecuado, recuerde que el pistón está en constante movimiento. A este tiempo de adelanto de la chispa con respecto al punto muerto superior se le llama avance al encendido.
Si consideramos ahora la velocidad de avance de la llama como constante, resulta evidente que con el aumento de la velocidad de rotación del motor, el pistón se moverá mas rápido, por lo que si queremos que nuestro incremento de presión se haga siempre en la posición adecuada del pistón en la carrera de fuerza, tendremos necesariamente, que adelantar el inicio del salto de la chispa a medida que aumenta la velocidad de rotación del motor. De este asunto surge la segunda condición que debe cumplir el sistema de encendido:

  • Condición2: El sistema de encendido debe ir adelantando el momento del salto de la chispa con respecto a la posición del pistón gradualmente a medida que aumenta la velocidad de rotación del motor.
La consideración hecha de que la velocidad de avance de la llama es constante no es estrictamente cierta, además en dependencia del nivel de llenado del cilindro con mezcla durante la carrera de admisión y de la riqueza de esta, la presión dentro del cilindro se incrementará a mayor o menor velocidad a medida que se quema, por lo que durante el avance de la llama en un cilindro lleno y rico la presión crecerá rápidamente y puede que la mezcla de las partes mas lejanas a la bujía no resistan el crecimiento de la presión y detonen antes de que llegue a ellas el frente de llama, con la consecuente pérdida de rendimiento y perjuicio al motor. De aquí surge la tercera condición que debe cumplir el sistema de encendido:
  • Condición 3: El sistema de encendido debe ir atrasando el momento del salto de la chispa a medida que el cilindro se llena mejor en la carrera de admisión.

Distribución del encendido

Cuando el motor tiene múltiples cilindros de trabajo resultará necesario producir la chispa cumpliendo con los requisitos tratados hasta aquí, para cada uno de los cilindros por cada vuelta del cigüeñal en el motor de dos tiempos, y por cada dos vueltas en el de cuatro tiempos. De aquí la cuarta condición:
  • Condición 4: El sistema de encendido debe producir en el momento exacto una chispa en cada uno de los cilindros del motor.
Veamos ahora como se cumplen estas exigencias para el sistema de encendido.

El diagrama básico

En la figura de la derecha se muestra un diagrama de bloques de los componentes del sistema de encendido.
Resulta imprescindible una fuente de suministro de energía eléctrica para abastecer al sistema, este puede ser una batería de acumuladores o un generador.
Luego será necesario un elemento que sea capaz de subir el bajo voltaje de la batería, a un valor elevado para el salto de la chispa (varios miles de voltios). Este generador de alto voltaje tendrá en cuenta las señales recibidas de los sensores de llenado del cilindro y de la velocidad de rotación del motor para determinar el momento exacto de la elevación de voltaje. Para la elevación del voltaje se usa un transformador
Será necesario también un dispositivo que distribuya el alto voltaje a los diferentes cables de cada uno de los productores de la chispa dentro de los cilindros (bujías) en concordancia con las posiciones respectivas de sus pistones para el caso del motor policilíndrico.
elevador de altísima relación de elevación que se le llama bobina de encendido en trabajo conjunto con un generador de pulsos que lo alimenta.
esquema



Descripción de los componentes

Dada la diversidad y de formas en que pueden cumplimentarse en la actualidad las exigencias del sistema de encendido y a su larga historia de adaptación a las tecnologías existentes se hace difícil abarcar todas las posibilidades, no obstante, haremos un recorrido por los mas representativos.
La aparición en la década de los 60s del siglo pasado de los dispositivos semiconductores y en especial los transistores, y luego los circuitos integrados, sentó pauta en la composición y estructura de los sistemas de encendido, de manera que para hablar de ellos habrá un antes, y un después, que son decisivos a la hora de describir un sistema de estos. Utilizaremos para la descripción del sistema uno de tipo clásico, de los utilizados antes de que los dispositivos electrónicos formaran parte del sistema.

Fuente de alimentación

La fuente de alimentación del sistema de encendido depende en muchos casos de la futura utilización a que se destine el motor, así tenemos que normalmente para el motor del automóvil que incluye, porque es requerido, una batería de acumuladores, se utiliza esta fuente para la alimentación del sistema, pero para los motores estacionarios, especialmente los pequeños, donde la batería no es necesaria para otro fin, se acude a los generadores de pulsos eléctricos conocidos como magnetos. Estos magnetos son pequeños generadores del tipo de rotor a imanes permanentes de corriente alterna movidos por el propio motor y sincronizados con él  que producen electricidad para alimentar el sistema de encendido durante el tiempo necesario para generar la chispa.
En ocasiones y para la mayoría de los motores mono cilíndricos pequeños de arranque manual, la electricidad la induce un imán permanente empotrado en el volante en el lugar apropiado al pasar frente a una bobina fija en el cuerpo del motor.

Generación del alto voltaje

El voltaje de alimentación del sistema de encendido, por ejemplo, alimentado con una batería suele ser de 6, 12, o 24 volts, mucho mas bajo de los 18,000 a 25,000 voltios necesarios para generar la chispa entre los electrodos de la bujía, separados hasta 2mm, y bajo la presión de la compresión. Para lograr este incremento se acude a un transformador elevador con muy alta relación entre el número de vueltas del primario y del secundario, conocido como bobina de encendido. Usted se preguntará  ¿Cómo un transformador, si es corriente directa? pues sí, veamos como:


Sincronizando el momento de apertura y cierre del contacto con el movimiento del motor y la posición del pistón, se puede generar la chispa en el momento adecuado al trabajo del motor en cada carrera de fuerza.
Si en lugar de una batería se utiliza un magneto, el esquema es esencialmente el mismo, con la diferencia de que el magneto estará generando la corriente del primario en el momento de apertura del contacto, aunque en el resto del ciclo no genere nada. Utilizando el sincronismo adecuado, magneto-contacto-posición del pistón el encendido estará garantizado.

esquema
 

Distribución

Cuando el motor tiene mas de un cilindro se necesita un chispa para cada uno, puede optarse por elaborar un sistema completo independiente por cilindro y de hecho se hace, pero lo mas común es que solo haya un sistema generador del alto voltaje que produzca la elevación tantas veces como haga falta (una vez por cilindro) y otro aparato que distribuya la electricidad a la bujía del cilindro correspondiente. Este dispositivo se llama distribuidor.


Adelanto al encendido con la velocidad del motor

Ya sabemos como se genera el alto voltaje y además como se distribuye a las diferentes bujías del motor, ahora veremos como se puede adelantar el encendido con el aumento de la velocidad de rotación del motor.
Consideremos el esquema de la figura 3, en él una leva determina el momento de la apertura del contacto y con esto el momento en que se produce la chispa en la bujía. Hemos visto que esta leva está montada en un eje que a su vez se mueve desde el motor a través de un engranaje para garantizar el debido sincronismo.  Si montamos la leva en su eje de manera que pueda girar sobre él y determinamos su posición exacta con respecto al eje a través de un mecanismo centrífugo podremos modificar la posición de la leva con respecto al eje en dependencia de la magnitud de la velocidad de su giro. De esta forma podremos ir adelantando el encendido cuando la velocidad aumenta y disminuyéndolo cuando esta velocidad baja. Como se altera la posición, la punta de la leva alcanzará a abrir el contacto con mas o menos atraso.
Este simple procedimiento es el que se usa con mucha frecuencia en los sistemas de encendido de los motores de automóvil. Unos contrapesos adelantan la posición de la leva con respecto a su eje debido a la fuerza centrífuga cuando la velocidad sube, y los muelles de recuperación del mecanismo la hacen retornar cuando baja.



 

Atraso al encendido cuando se llena mejor el cilindro.

Cuando se aprieta el acelerador se abre la mariposa del carburador o del sistema de inyección de gasolina y se llena mejor el cilindro del motor, esta apertura hace que la magnitud del vacío dentro del conducto de admisión entre el cilindro y la mariposa se reduzca, es decir la presión absoluta en este conducto aumenta al haber mejor acceso a la presión atmosférica exterior.


De esta forma, la magnitud de la presión absoluta dentro del conducto de admisión sirve para conocer de manera indirecta como se ha llenado el cilindro del motor, el valor de esta presión absoluta es la que se utiliza para adelantar o atrasar el momento del encendido. Para ello la base donde está montado el contacto descrito en la figura 3 se construye de manera tal que pueda girar con respecto al eje de la leva. Observe el animado de la figura 4. Un diafragma flexible al que se le aplica la presión del conducto de admisión vence la fuerza de un resorte (no representado), haciendo girar la base del contacto en mayor o menor proporción de acuerdo a la presión y por lo tanto mueve el contacto con respecto a la leva con lo que la apertura de este se logra mas temprano o mas tarde de acuerdo al llenado del cilindro. Resulta ser el mismo efecto del mecanismo centrífugo del punto anterior, pero en este caso teniendo en cuenta el valor absoluto de la presión en el conducto de admisión.
animado

Pongamos todo junto

Tratemos ahora de poner todo junto como un conjunto, para ello utilizaremos el esquema de la figura 5 correspondiente al sistema de encendido típico por contacto, tal y como se usaba  antes de la introducción de los dispositivos semiconductores.
Observe que el cable procedente de la batería pasando por el interruptor de arranque alimenta el primario de la bobina de encendido. El circuito del primario se completa a tierra con el contacto dentro del dispositivo llamado como Conjunto distribuidor.
Note también como la leva y el rotor que distribuye la corriente de alto voltaje a las diferentes bujías, están montados en el eje que se conecta al motor.
Un elemento nuevo es el condensador, está conectado en paralelo con el elemento móvil del contacto, este condensador ayuda a reducir las chispas en el contacto y aumenta la potencia de la chispa.
El mecanismo centrífugo y el diafragma que sirven para acomodar el avance al encendido no están representados.
El cable de alto voltaje que sale de la bobina de encendido entra al centro del rotor por medio de un contacto deslizante y este lo transmite a la bujía correspondiente al girar.

esquema
 





Un distribuidor real luce así como se muestra en la figura 6, en el costado izquierdo está el diafragma de avance al que se conecta una manguera procedente del carburador. La tapa de color negro donde se conectan los cables de alta tensión está construida de un material plástico resistente al calor y aislante de la electricidad que se acopla al cuerpo con la ayuda de unas presillas metálicas fácilmente desmontables. Observe el tornillo lateral, ahí se conecta el cable procedente de la bobina de encendido, el cable exterior que se muestra, es el del condensador, que en este caso está en el exterior detrás del diafragma.
La pieza dorada mas inferior es el acoplamiento al engranaje del motor.

vista
 


modo de alimentacion de combustible

inyeccion monopunto (TBI)
en este caso uno o dos inyectores alimentan a todos los cilindros, de manera q permite una dosificacion balanseada de la mezcla aire-combustible.
generalmente, este inyector o estos dos inyectores se colocan en el cuerpo de aseleracion, montados sobre el multiple de admision.
el tamaño de este tipo de inyectores es mayor que el de los inyectores utilisados en el sistema multipunto.
inyecion multipuntos o multipurtos (MPFI)
el combustible se suministra al motor a traves de inyectores individuales montados en el mutiple de admision cerca de cada cilindro este sistema tiene un inyector para cada cilindro de manera que permite una dosificasion de la mezcla aire-combustible estos inyectores se colocan generalmente en el punto de admision que es la zona en la cual se encuentra en coordinasion con la valbula de admision antes de la camara de combustion.

1) Deposito cn Bomba de bencina
2)Filtro de bencina
3a) Tps = sensor de posicion de la mariposa
3d) Inyector Monopunto Botton feed
3e) Valvula IAC o valvula de relenti
4) sensor de Temperatura
5) sensor de Oxigeno
6) Ecu
 
Inyección Directa (FSI): Sistema de alimentación en los motores diesel donde el combustible es inyectado en la camara de combustión, favoreciendo la creación de turbulencias para un mejor quemado de la mezcla. Estos motores aportan mayores prestaciones y menores consumos que los de inyección indirecta. La contra son mas ruidosos en frío, perdiendola segun van alcanzando su temperatura ideal de funcionamiento.
http://www.blogcdn.com/automoviles.aol.com/media/2009/06/directinjection-hyundai2.jpg
Inyección de Gasolina: Sistema de alimentación en el que la gasolina es inyectada y pulverizada a presión en la camara de combustión o en el multiple de admisión. Su mayor ventaja respecto a la alimentación por carburador (aspirada) radica en una mejor presición en la dosificación del combustible, razon por la cual aumenta el rendimiento y la potencia del motor y reduce el consumo, y las emisiones de escape.
http://www.mecanicavirtual.org/imagesartic/common-rail.gif
Inyección Indirecta: El combustible es inyectado a una precamara o colector de admisión antes de pasar al cilindro. Esta tecnica esta pasando a un segundo plano con la adopción de la inyección directa (FSI) 
http://www.mecanicavirtual.org/imagesdiesel/tdi-camara.jpg
  Inyección Secuencial: Sistema de inyección sin accionamiento mecánico, controlado electronicamente, con el que se inyecta intermitentemente combustible en el selector de admisión. Es decir; se hace llegar a cada cilindro exactamente el combustible necesario para el estado de servicio del motor en cada momento. La inyección secuencial es utilizada en los sistemas multipunto.


  http://cleanfuelpr.com/images/instalacion.jpg

viernes, 23 de abril de 2010

Inyección de combustible


La inyección de combustible es un sistema de alimentación de motores de combustión interna, y alternativo al carburador en los motores de explosión, que es el que usan prácticamente todos los automóviles europeos desde 1990, debido a la obligación de reducir las emisiones contaminantes y para que sea posible y duradero el uso del catalizador.


Este sistema es utilizado, obligatoriamente, en el ciclo del diésel desde siempre, puesto que el combustible tiene que ser inyectado dentro de la cámara en el momento de la combustión (aunque no siempre la cámara está sobre la cabeza del pistón).






En los motores de gasolina o GLP actualmente está desterrado el carburador en favor de la inyección, ya que permite una mejor dosificación del combustible y sobre todo desde la aplicación del gobierno electrónico por medio de un calculador que utiliza la información de diversos sensores colocados sobre el motor para manejar las distintas fases de funcionamiento, siempre obedeciendo las solicitudes del conductor en primer lugar y las normas de anticontaminación en un segundo lugar.


Sistemas de inyección [editar]En un principio se usaba inyección mecánica pero actualmente la inyección electrónica es común incluso en motores diésel.








Los sistemas de inyección se dividen en:






Inyección multipunto y monopunto: Para ahorrar costes a veces se utilizaba un solo inyector para todos los cilindros, o sea, monopunto; en vez de uno por cada cilindro, o multipunto. Actualmente, y debido a las normas de anticontaminación existentes en la gran mayoría de los países, la inyección monopunto ha caído en desuso.


Directa e indirecta. En los motores de gasolina es indirecta si se pulveriza el combustible en el colector de admisión en vez de dentro de la cámara de combustión ó sea en el cilindro. En los diésel, en cambio, se denomina indirecta si se inyecta dentro de una precámara que se encuentra conectada a la cámara de combustión ó cámara principal que usualmente en las inyecciones directas se encuentran dentro de las cabezas de los pistones.


Gracias a la electrónica de hoy en día, son indiscutibles las ventajas de la inyección eléctrónica. Es importante aclarar que hoy en día todos los Calculadores electrónicos de Inyección (mayormente conocidos como ECU ó ECM) también manejan la parte del encendido en el proceso de la combustión. Aparte de tener un mapa de inyección para todas las circunstancias de carga y régimen del motor, este sistema permite algunas técnicas como el corte del encendido en aceleración (para evitar que el motor se revolucione excesivamente), y el corte de la inyección al detener el vehículo con el motor, o desacelerar, para aumentar la retención, evitar el gasto innecesario de combustible y principalmente evitar la contaminación.






En los motores diésel el combustible debe estar más pulverizado porque se tiene que mezclar en un lapso menor y para que el encendido del mismo sea completo. Un motor de gasolina tiene toda la carrera de admisión y la de compresión para mezclarse, en cambio un diésel durante las carreras de admisión y compresión sólo hay aire en el cilindro. Cuando se llega al final de la compresión, el aire ha sido comprimido y por tanto tiene una elevada presión y temperatura la cual permiten que al inyectar el combustible, éste pueda inflamarse. Debido a las altas presiones reinantes en la cámara de combustión se han diseñado entre otros sistemas, el common-rail y el elemento bomba-inyector a fin de obtener mejores resultados en términos de rendimiento, economía de combustible y anticontaminación.






Mapa de inyección [editar]El mapa de inyección de combustible de un automóvil a gasolina es una cartografía o varias, según la tecnología que equipe al vehículo, en las cuales se encuentran gráficos en tres dimensiones (tres ejes x, y, z) y determinan los puntos de funcionamiento del motor, mientras que el que ejecuta y comprueba todos esto datos es el calculador de inyección de combustible. Una cartografía simple y característica de las primeras inyecciones controladas electrónicamente es la que involucra los siguientes parámetros como fundamentales: presión de aire de admisión, régimen motor, tiempo de inyección.






Los actuales calculadores de inyeccón electrónicos, para motores tanto Diesel como gasolina, poseen amplias y variadas cartografías de funcionamiento para cada etapa del motor, inclusive existen cartografías especialmente diseñadas para funcionar en caso de detección de fallo de un elemento del sistema de inyección, permitiendo al conductor acercarse al concesionario o taller más cercano con la tranquilidad de que no le sucederá nada perjudicial al motor.
Disposición de inyección para un sistema de inyección de combustible de acumulador de un motor de combustión interna, con una tobera de inyección (16) que penetra en una cámara de combustión del motor de combustión interna y que puede abastecerse de combustible desde un distribuidor de combustible de alta presión (10) del sistema de inyección de acumulador, a través de una vía de abastecimiento de combustible de alta presión (14, 52, 44, 40), y una aguja de tobera (30) que abre y cierra la tobera de inyección (16) en dependencia de la presión en una cámara de control (58), en donde para introducir combustible en la cámara de control (58) desemboca en la cámara de control (58) un canal de alimentación (62) que se deriva de la vía de abastecimiento de combustible (14, 52, 44, 40) y una vía de descarga (66, 78), que sale de la cámara de control (58), hace posible la descarga del combustible desde la cámara de control (58), en donde además está prevista una válvula de bloqueo (70), por medio de la cual puede bloquearse un segmento (66”) corriente abajo de la vía de descarga (66, 78) - con relación al sentido de descarga del combustible - con respecto a un segmento (66’) corriente arriba de la vía de descarga (66, 78), en donde además el segmento corriente abajo y el segmento corriente arriba (66’, 66”) de la vía de descarga (66, 78) desembocan en una cámara de válvula (78), en la que está dispuesto de forma graduable un elemento de bloqueo (76) de la válvula de bloqueo (70), y en donde de la vía de abastecimiento de combustible (14, 52, 44, 40) se ha derivado un canal de derivación (74) que desemboca en la vía de descarga (66, 78) para introducir una corriente de combustible adicional en la cámara de control (58), caracterizada porque el punto de desembocadura del canal de derivación (74) está situado en la vía de descarga (66, 78) en la región de la cámara de válvula (78).


Se provee un sistema de inyección de combustible para un motor de combustión interna con la capacidad de suministrar, en la estructura en la que las válvulas de inyección de combustible estén dispuestas en el lado caudal arriba y en el lado caudal abajo desde la válvula de estrangulación respectivamente, una cantidad adecuada de combustible en la cámara de combustión todo el tiempo si que el combustible se adhiera y permanezca en la válvula de estrangulación aún cuando la válvula de estrangulación se encierre abruptamente. Solución. Sobre la base de los parámetros plurales que incluyen la abertura de estrangulación ?TH y la velocidad del motor NE, se incluyen: Elementos 101, 102, 105 para determinar cada una de las cantidades de inyección de las válvulas de inyección de combustible caudal arriba y caudal abajo, elementos 5 para detectar una tasa de cambio ??TH de la abertura de estrangulación en la dirección de cierre de la válvula de inyección, elementos 104a para detener la inyección de combustible debido a la válvula de inyección de combustible caudal arriba cuando la tasa de cambio ??TH es mayor, y elementos 104b para reducir la cantidad de inyección desde la válvula de inyección de combustible caudal abajo cuando la inyección de combustible de la válvula de inyección caudal arriba se detiene.